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Abstract. The frequency-dependent conductivity (resistivity) of two isolated parallel electron
layers is calculated. We take into account both the direct electron—electron interaction and the
coupling between electrons through phonon exchange. It is found that the interlayer momentum
relaxation due to the direct Coulomb interaction and the phonon exchange interaction has the
same dependence on the layer separation. The resuits for the conductivity rests on the Kuabo
formula for conductivity and the Gresn function formalism. The numerical results for the
temperature dependence of oz in the D [imit is presented. Furthermore, we have calcoilated
the frequency dependence of o3z in the zero-temperature Jimit.

1. Introduction

Recently, there has been considerable interest, both theoretically and experimentally, on
the coupling effects of two isolated paralle]l quasi-two-dimensional electron systems [1--10].
For the simplest such structures, the double quantum well (DQW), recent experiments [1]
have suggested that the interwell interaction can dramatically alter the single-electron levels
in samples with thin tunneling barriers. Even in a DQW with negligible tunneling, new
fractional filling states in the extreme quantum limit have been investigated based on
the inter-layer electron—electron interaction [2, 3], Such direct electron-electron interaction
is also believed to be the dominant mechanism responsible for the interiayer momentum
relaxation. Experimentally measured frictional drag voltage in one layer when the other layer
is driven by an applied voltage shows a roughly T? dependence, confirming the dominance
of direct Coulomb interaction between the layers [10]. However, the deviation from T2
behaviour is still noticeable. To explain these deviations, phonon exchange interaction
between layers is proposed [10,11] and the DC current has been calculated using the
Boltzmann equation formalism [11].

in this paper, we present a first-principles calculation of frequency-dependent
conductivity for two such parallet isolated two-dimensional electron systems. We take into
account both the electron~electron interaction and electron—phonon coupling. We find that,
contrary to the result of [11], the inter-layer momentum relaxation rate R due to electron—
phonon coupling has a similar strong dependence on the separation between the two layers
a. The rate due to the direct Coulomb interaction is proportional to 72 at @ = 0 because of
the phase space requirement. The rate due to the phonon exchange interaction depends non-
monotonically on T. It goes to zero much faster than 72 at low temperatures and becomes
nearly independent of T at high temperatures. At zero temperature, the conductivity goes to
zero at low frequencies roughly as w?. We also attribute the deviation from w? to electron
phonon coupling.
0953-8984/93/285009+10307.50 (© 1993 IOP Publishing Lid . 3009
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2. Evaluation of the conductivity

Let us consider electrons of density #, and mass m; on iayer 1 and electrons of density n;
and mass m, on layer 2. These two layers are separated by a distance a and the direction
perpendicular to the layers is chosen as the z direction. We shall use a simplified model in
which electrons can only move in the x—y plane. The wavefunction on each layer can be
written as

@D, 7, z) = ePTE( — 217) (1)

where p, r are, respectively, the two-dimensional (2D) momentum and position vector along
the plane, z; = 0 and z; = a; £(z) is defined in such a way that it gives a §-function-like
distribution

[§(2)|* = 8(2).
The Hamiltonian of our two-layer electron—phonon system is given as
H = Hy+ H, (2)
where
Hy = Z!ZZ Ep, ;a (A + Z wqbgbq 3)
p I=1

where E,; = p*/2m; and @ = (q, q,) is a three-dimensional vector because our 20 electrons
only interact with the bulk phonon of the compound; H; consists of both electron—electron
and electron—phonon interactions, given by

Hi=3 Z Z Volll)aly g ) paprans + 3 S CH@ah g aniB) +5-0).

p rgll'= Q =12
(4)
Here £, = p?/2my is the kinetic energy of an electron having momentum p, wg is the

wavenumber-dependent phonon frequency and al‘,, ap,((bg, bg) represent, respectively, the
electron (phonon) creation and destruction operators with momentum g(€2). The coupling
term V, (/') is the Fourier transform of the Coulomb interaction for planar electrons. The
coupling between planar electron and bulk phonon is treated in the jellium mode] as

2re? wq

172
CHQ) = n( ) f G (e @), )

For a §-function distribution, (5) becomes simply

12
@ = 1( 2”; "’") elaun: ©)

where wg is the phonon frequency at wavenumber Q.

To evaluate the conductivity, we start from the Kubo formula for conductivity, which
is

00 i fi
() = fo drei fo ALl — N o (O)) ™
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where w is the frequency of the electromagnetic wave and we have set /i equal to unity for
notational convenience. Here

) e
= =3 p,al e,
m; 7

and
j6) = €™ j(0peiH

is the current operator in the Heisenberg representation and the average of an operator is
defined by

{0} =Tr [exp[ﬁ(ﬂ + ) N - H)]O} (8)

=12

where H is the total Hamiltonian of the system and $2 is the free energy defined through
following relation:

s ()]

In the above equations, w; and N, are the chemical potential and number operator of layer
I (1 or2), and B is the inverse temperature in energy units. Equation (7) can be rewritten
as

Ot (@) = (@) + 0}, (@) (9)
where
0 ieznf
olw) = — (10)
myw
1 ! i jewt p » s
auv.ll'(w) = ; o dre ([J'ui(t)a Ju[’(o)l)- (11)

The calculation of the current—current correlations and the conductivity in the bulk
case [12] 2D systems [13, 14] and superlattice structures [15] are all well documented and
we shall not present here detailed derivations. Our basic treatments are that electron—
electron interactions are treated in the self-consistent field approximation and electron—
phonon collisions in the Born approximation. Under these approximations, we need only to
consider the class of diagrams of figure 1. Our expression includes the full dynamical
screening of the electron—phonon systems. The wavy line in figure | is the effective
interaction of an electron with another electron on the same or different layers; this consists
of both the direct Coulomb interaction as well as the interaction through phonon exchange.
Analytically it can be written as the following integral equation:

(g, am) = Vol + ) Ci(q, 4:)C}(q, 4:) Do) + ), Vo UI)TTu(q, am) v (g, am)
q: Ilt

+ Y Ci(g, 4:)C(q, 4:) Do (@)1 (9, )V (g, ) (12)
q:-[”
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(a} (b) {e}

4
pte
{,tm
gt
p
X
£ w Figure 1. {a)-{¢) A class of diagram
4o that contributes to the high-frequency
conductivity. The full curve rep-
resents the eleciron propagator and
the wayy curve represents the effec-
£ tive interaction. () The diagram-
( o4 44 matic representation of the effective
interaction, where the broken line is
e S e Foreraens 4+ p| jeta + P P+ for bare electron—electron interaction
e I R X and the dotted line is for unscreened
it £ 5 £, electron~phonon coupling.
where
oy = 2nmifB m = any integer.

In (11), I1(g, w) is the electronic polarizability and Dg is the free phonon propagator, given
as

Dg = wg/(@® ~ wh).
We now carry out the summation over g, in (12) and define

Yir(q, @) = Y €i(g,4:)C}(q. 4:) Do (w). (13)
QE

By making a suitable choice of the electronic wavefunction in the z direction, the summation
over g, can be performed in (13). In the present approximation electrons are purely two-
dimensional, and we obtain

2
2n%e?  wg .
—_a  qli-Vla
T3¢ ; (14)
2

wﬂ'(q, CU) =

w w

Since there are only two layers in our system, all compenents of vy can be obtained
analytically; for example

Var + ¥
(1 = (Vir + )T — (Voo + ¥a2)TT2] — (Viz + ¥r2)(Vay + ¥r20) 10 I
(15)

vnig, w) =
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where we have suppressed the explicit ¢ dependence of V and the ¢, w-dependence of ¥
and T1. In the above equation, V), = 2we?/q, Va; = V11e79.
The frequency-dependent interlayer interaction »;2 can be separated into two terms

Vai(g) ¥y

) = 16
va1 (g @) @ + q.0) (16)
where e(g, w) is the dynamical dielectric function of the electrons, given by

elg, w) = (1 — V)1 — Vaullg) — Via Vo I 112 (17)
and the renormalized electron-phonon coupling ¥ is given as
7 ( y @ .
Valg, w} = - P]ﬁl Z)/e)(q,co) [1 - Mz (Vi Vaz — VizVai — ¥ Vi — Varyand].

(18)

The function P(g,w) is the correction to the dielectric function due to electron—phonon
coupling:

P(g, @) = Th{l — Vit [11)¥n + T (1 — VIl + I Fla [ vz 4 v + 2Viag2l
(19)

The meaning of the separation in (16) is that the first term is the screened Coulomb
potential due to the colleciive motion of the electrons and the second term represents the
renormalized phonon interaction at a vertex with the electron through 2 screened electron—
phonon interaction.

The renormalized electron—phonon coupling ¥, given by (18) and (19), looks rather
complicated, especially when separation of the real part and imaginary part is required.
However, the physical meaning of this renormalization can be visualized in the case of
weak electron—electron coupling (or small plasma parameter rs = mez/hzkp). In this case,
terms in higher order of r; can be neglected (e.g. the 1,11, term) and we obtain

2 2
e (-Uq

; 2
Vuld:®) = = T AT A) b & aAT)

e (20

where § is the halfwidth of the free phonon and

2me? ( I, 4+ I, )
A= Re (21
gq 1= VI — Vaallz

is the relative shift of phonon frequency, and

2 2
r=2¢ Im( + 1 ) 22)
q =Vl — Viully

is the correction to the phonon width due to electron—electron interaction,

In this paper, our main concem is the interlayer momentum or current relaxation due
to both the electron~electron and electron—phonon interaction. Therefore we shall study the
off-diagonal matrix element of the conductivity in detail:

‘l .
Ourat(®) = =1, () @)
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- where for any function f(z) in the complex z plane, we denote
+ .
= 1 .
fHe) = lim f@

The function ¥+ is the analytical continuation of M (r), which is given by

B .
Myoa(n) = fo A BN ()
and

Myv.21 () = (T u2() ju (O —B<u<p (24)

The interlayer matrix element M,, 7 can be obtained using the Green function technique
to evaluate diagrams 1{(c) and 1(d). We shali also assume that system is isotropic on the
layer (M, = M3,, and we denote M, 2 as simply M) to obtain

y 1 g*d’q ¢° .
31 () = Tl e—— gvm(q,am)vlz(q,am+wn)

x [I14g, @m + o) — T1(g, @n)] [N2(q, om + @4} — T12(g, &tm) ] (25)

where e? has been factored out from vy;. In order to perform analytical continuation on the
upper-half z plane, we first sum over m. After some algebra, we obtain

1 q*d*q 8
M = — h 1 +
21(w) 22 prem— fducot (zBWv12(g, 4™ + @)

x {UZI(qr “+)[n1(q' H+ + CIJ) - nl(q’ u+)][n2(¢?, u+ + &)) - n2(qv u+)]
—vai(g, u7)Mi(g, ut + w) ~ (g, u™)IM2(q, 5T + ) — Mg, u™)IR6)

where u* = u & i0. In the following, we are only interested in absorption properties due
to interlayer interactions. The interlayer relaxation time 7o is given by the real part of the
intertayer element of the conductivity tensor, ;' ~ Re (["']—1)21' We obtain

ret

2w(mng + man;)

242
75 (@) = f ‘74‘;‘* f dufcoth( Bu) — coth[18(u + W)} F (1, u + w)

@7
where F = F) + F, + F3, and each can be written explicitly as
Fi = (TTh(u + o) + T30} (4 + @) + TR (0 + o)l @) + viy(u + w)vl @)]
— [0 + ) + MM + o) - TRw))
X (D120 + )0 () — V50 + w)v, (w)]
Fy = —(My( + w) — )T (4 + w) — TS )][of e + o) () — vly(e + w)vl (w)]
+ [T (s + @) ~ T EHITTN s + w) — TR ()]
% [via(u + @)ug () + vy (0 + wvy ()]
Fy = 2[5 (u + @) — TS (){wlyu + o)}, ) T + @) — vl (u + w)uR (@) TE ()
— M} + @) = O @) vl + o)l @)
where the superscripts R and 1 represent the real and imaginary parts of the relative

quantities. This result is rather complicated, but in principle can be evaluated analytically
or numerically for specific problems and is valid for any temperature.
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3. Temperature dependence of 75;' in the DC limit

If the temperature is higher compared to the photon energy, we may use the zero-frequency
result of (26} to study the temperature dependence of the interlayer relaxation process. First
we notice that /5, F3 and the second term of F; all approach zero when w — 0, and we
obtain

mwe
2(m nz + mzm)

2d2
(T) = [L52 [ compwimepmene. @
Here (27) is only a special limiting case of a general frequency-dependent relaxation. By
making use of (16), the interlayer coupling strength |vi2(«)|? can be rewritten as

[Vi2)? Viz Re( Vi ) [ 12
le(g. w)> ~ “lelg,w)2 \elg,u)/  le(g. u)}?

We shall discuss the contribution to rl‘?_l (T') due to each term in (27) below.

When the electron—phenon coupling is neglected, only the first term in (29) contributes.
Furthermore, if we assume energy transfer during the collision is smaller compared to the
termperature, static screening is applicable. By making use of the fact that, at low energy,
IM'(x) can be written as F(g)u, we immediately obtain

(V2 =

(29)

]
duut— coth(-%ﬂu) ~T?

TG F R@) | =

7, (Dleper =

2("‘!["2 +mzn1) f
(30)

Here Fi(g) = m20(ki; — (g/2%)/q\/k}F; — (q/2)%, where 6(x) is a Heaviside unit step
function. It should be pointed out that the low-frequency Coulomb collision is always
proportional to T2 for virtually all systems [13, 16]; it is essentially due to the phase space
allowed during the collision. Two-layer systems simply provide an excellent sample which
demonstrates such T2 behaviour. We also notice that F;(g) goes to zero as n; goes to zero,
therefore the interlayer collision frequency vanishes as the electron density on either layer
approaches zero.

The contribution due to electron-phonon coupling is determined by both the second
and third term in (29). Such effects were recently studied by Tso and co-workers [11]. In
their work they assumed that the contribution due to the third term (termed as real phonon
exchange) is negligible. Therefore they only consider the term proportional to ¢ (called the
virtual phonon process). However, their result that the interlayer relaxation due to virtual
phonon exchange is almost independent of layer separation a seems in contradiction with
the second term in (29). It is clear that to leading order (under the assumption ga 3 1,
where g is the screening length), the contribution due to this term should have the same a
dependence as that due to the first term. Our result of interiayer relaxation due to virtual
phonon exchange can be written as

T T et = met (@) Fag) =2 VA
e = s + ) R@FQ) 7o
28 W22 — w2(1 + A)
xfd"" au OMGA T — W21+ M) + (b + wRTR 31

The numerical results of 1'1_2l for two different layer separations are presented in figure 2.
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4. Frequency dependence of 1-1“21 atT =0
We now consider the frequency dependence of 7 '(w). If the temperature is low compared

to the photon energy, we can perform our calculation by using the zero-temperature
approximation, and obtain

4 292 1]
-1 me q°d’q f
- duF(u, w— u). 32
(@) 2m(m1nz+mzn;)_[ i Sy wF o —u) ¢

At finite frequencies, it is not convenient to separate the contribution solely due to the
electron—electron interaction because of the complex structure of F (i, @ — ). In this case,
we shall calculate 1':_2! (@) due to the total effective potential given by (15) or (16). The
quantity F{u,w — u) can be cast as sum of two terms, F(u, 0 — 1) = F(u,w — u) +
Fo(u, w—u), where Fj is the contribution due to the single-particle excitation and F, is the
contribution due to the collective excitation of the coupled electron-phonon system. For
the single-particle contribution, we write Fy(u, w — u) = Fo(u, @ — 0)/IEw)?é(@ — w){%,
where
Fu o~ u) = [Myw — ) + @)} (@ — ) + T 6)I(As + By)

— [} @ ~ 1) = TTFC; — D)

— M ~ #) — M) (@ — u) — T} @) (A — By)

— [ (@ — u) = DT @)ICs + Do)}

+ 2T (@ — w) — NI DIT (0 — w) — T ) Cs

— [} (@ — u) — T} ()] 8;) (33)

and

€ =[1 — (Vi) + ¥n)ThI1 = (Vaz + ¥e2)TTa] — (Viz + ¥n2) (Var + ¥ )T [Tg. 34
The quantities A;, B, C,, D; are given by

As = [(Var + ¥ (@ — ))& (0 — ) + 93, (0 — )& (@ — )]
x [(Var + 5 )ER () + ¥, )@ )]

By = [y (@ — ) (@ — w) — (Vay + ¥ (0 — w)E (@ — )]
x [, ()ER (u) — (Vay + ¥ ()@ )

Cs = Y3 (@ — e (w — u) = (Va1 + ¢80 )& (w — u))
x [(Var + wh ))E% () + ¥2, ()& ()]

Dy = [(Var + ¥} (@ — )& (@ — u) + ¥}, (@ — 0)é(w ~ w)]
x [P ()ER () — (Var + ¥R )& w)).

The contribution due to the collective excitations, F, is given by

Folu, @ — u) = [My(w — &) + @RI (@ — #) + T @)18,
— Mo - u) = T} W)(Ce — D)}
— [My(w — u) — M)~ [N} {w — 1) - [} @18,
— M (@ — w) — I})I(C, + Do)}
+2(05(w — ) — I (@)D M (@ — u) - T @)C,
— [T — u) — T (u)] 8.} 35)
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where

B. = 8{eR% (@ — m)}(Var + Y5 (@ — 0)) [Var &) + (Vay + ¥ ())& (w)] 1€ )]~
+ 8(ER ) }(Vay + ¥R ()
x [Va18*(e — u) + (Va; + ¥5 (0 — ))& @ — u)]jé(w —u)| 2

Ce = [(Vay + ¥ (0 — u)E (@ — u) + ¥4, &0 — w)]
x [Var + ¥ (@ — m)]|&(e — u)|28{eR ()}

De = [(Va1 + ¥y )& () + 43, € @)][Vay + 5 @)]I@) 78R (0 — w)}-

In figure 3 we present the numeTical of ©;;' (w) for two typical values of parameters.
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Figure 2. Plots of interlayer momentum relaxation rate
R= t{l' due to electron-phonon coupling as a function
of temperature in the pcC limit. Here r; = 1.0 for
both layers and the free-phonon linewidth is chosen as
0.0001Es. The full curve is for ke = 1.0 and the
dotted curve is for kpe = 2.0; the ratio v; /vy (where v

Figure 3. Plots of interlayer momentum relaxation rate
R due to electron~phonon coupling as a function of
normalized fequency, 2 = w/ER, at zero temperature.
The full curve is for Apa = 0.5 and the dotted curve
is for kea = 1.0; other parameters are the same as in
figure 2.

is the sound velocity) is chosen to be 0.01.

5. Results and discussions

In this work, our main concem is the dynmamical conductivity of an electronic system
consisting of two isolated parallel layers. We have calculated the off-diagonal component of
the dynamical conductivity, which is directly reiated to the interlayer momenturm relaxation
rate. We obtain the rate R ~ rz']l as a function of temperature and the frequency of
photon field. Such momentum refaxation is due to both the electron-electron Coulomb
interaction and the electron—phonon coupling. In the zero-frequency limit, the rate due
to direct Coulomb interaction can be separated and the correction due io electron—phonon
coupling is calculated explicitly. The temperature dependence of Rie-py is similar to that
obtained by the others. At low temperature, the rate goes to zero much faster than T2 due to
the vanishing phonon population. At high T, the rate depends very weakly on T. However,
the rate depends on the layer separation very strongly, contrary to the findings of [11].
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‘We have also studied the frequency dependence of R(w) at zero temperature due to total
effective potential. At low frequencies, R(w) is again dominated by the direct Coulomb
interaction and therefore exhibits a nearly w? dependence. (It should be noted that an w?
or T? dependence is not limited to the present DQW structure, but is rather quite general,
essentially because the density of states vanishes with ). The deviation from w?, which
is quite noticeable, is believed to be the effect of phonons. The collective excitation of
the coupled electron—phonon system contributes most at around and above Ep. Here apain,
R{w) depends strongly on the layer separation; when the separation is reduced by half, the
rate increases by an order of magnitude.

We would like to point out that the previous conclusion [11] that the interlayer electron
momentum relaxation is nearly independent of the layer separation seems incorrect to us.
The electron~phonon coupling parameter, ¥ (g, @) (or [M (g, w}|* in [11]) is given by (5),
(6) and (13), which is in general a strong separation dependent function. For 2D or quasi-
2D electron systems, the processes only involve those phonons with negligible wavevector
in the z direction and the coupling parameter is given by (14). Even if one adopts the
jellium model, as in [11], a similar separation dependence should be obtained. In [11],
the assumption that {M(q, w)|* = 2me’w, /q? is a probably oversimplified model which
leads to the final result being separation independent. Intuitively, the coupling between two
electrons should vanish when they are far apart, whether it is a direct coupling or through
some other exchange mechanism.

In conclusion, the dynamical conductivity of a DQW in the 2D limit has been investigated.
We hope that the frequency dependence presented here can also be studied experimentally.
This will certainly provide another avenue to check the role of phonons in the electron
transport in DQW structures.
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