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Abstracr The frequency-dependent conductivity (resistivity) of two isolated parallel electron 
layers IS calculated. We lake into account Lmlh the direct elecuon-elecmn interaction and the 
coupling between electrons through phonon exchange. It is found thal the interlayer momentum 
relaxation due to the direct Coulomb interaction and the phonon exchange interac~on has the 
same dependence on the layer separation. The results for the conductivity rests on the KuLm 
formula for conductivity and the Green function formalism. The numerical results for the 
temperahrre dependence of 012 in the DC limit is presented. Furlhermore, we have calculated 
the frequency dependence of UIZ in the mm-temperature limir 

1. Introduction 

Recently, there has been considerable interest, both theoretically and experimentally, on 
the coupling effects of two isolated parallel quasi-two-dimensional electron systems [l-101. 
For the simplest such structures, the double quantum well (DQW), recent experiments 113 
have suggested that the interwell interaction can dramatically alter the single-electron levels 
in samples with thin tunneling baniers. Even in a OQW with negligible tunneling, new 
fractional filling states in the extreme quantum limit have been investigated based on 
the inter-layer electron-electron interaction [2,3]. Such direct electron-electron interaction 
is also believed to be the dominant mechanism responsible for the interlayer momentum 
relaxation. Experimentally measured frictional drag voltage in one layer when the other layer 
is driven by an applied voltage shows a roughly TZ dependence, confirming the dominance 
of direct Coulomb interaction between the layers [lo]. However, the deviation from TZ 
behaviour is still noticeable. To explain these deviations, phonon exchange interaction 
between layers is proposed [lo, 111 and the Dc current has been calculated using the 
Boltzmann equation formalism 11 11. 

In this paper, we present a first-principles calculation of frequency-dependent 
conductivity for two such parallel isolated two-dimensional electron systems. We take into 
account both the electron-electron interaction and electron-phonon coupling. We find that 
contrary to the result of [ 1 I], the inter-layer momentum relaxation rate R due to electrun- 
phonon coupling has a similar strong dependence on the separation between the two layers 
a. The rate due to the direct Coulomb interaction is proportional to T2 at OJ = 0 because of 
the phase space requirement. The rate due to the phonon exchange interaction depends non- 
monotonically on T. It goes to zero much faster than T 2  at low temperatures and becomes 
nearly independent of T at high temperatures. At zero temperature. the conductivity goes to 
zero at low frequencies roughly as mZ. We also atmbute the deviation from w2 to electron 
phonon coupling. 
0953-8984/93/28SW9+10$07.50 @ 1993 IOP Publishing Ltd 5009 
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2. Evaluation of the conductivity 

Let us consider electrons of density n l  and mass ml on layer 1 and electrons of density nz 
and mass m2 on layer 2. These two layers are separated by a distance a and the direction 
perpendicular to the layers is chosen as the i direction. We shall use a simplified model in 
which electrons can only move in the x-y plane. The wavefunction on each layer can be 
written as 

(1) 
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@@, T ,  z) = eipP[(z - z ~ , ~ )  

where p .  T are, respectively, the two-dimensional (PD) momentum and position vector along 
the plane, zI = 0 and z2 = a; t (z)  is defined in such a way that it gives a 6-function-like 
distribution 

E(2)12 =a@). 
The Hamiltonian of our two-layer electron-phonon system is given as 

H = Ho + H,  (2) 

where 

where E,,! = p 2  f2mr and Q = (4. qz) is a three-dimensional vector because our 2D electrons 
only interact with the bulk phonon of the compound; HI consists of both electron-electron 
and electron-phonon interactions, given by 

(4) 

Here EP.! = p 2  f2mf is the kinetic energy of an electron having momentum p ,  up is the 

electron (phonon) creation and destruction operators with momentum q(Q). The coupling 
term V,(/l’) is the Fourier transform of the Coulomb interaction for planar electrons. The 
coupling between planar electron and bulk phonon is treated in the jellium model as 

wavenumber-dependent phonon frequency and up,!, t a,,l(bQ, t bq) represent, respectively, the 

For a &function distribution, ( 5 )  becomes simply 

where WQ is the phonon frequency at wavenumber Q. 

is 
To evaluate the conductivity, we start from the Kubo formula for conductivity, which 

P 
~pu,d4 = dmdieY‘  1 dUj& - i W d 0 ) )  (7) 
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where o is the frequency of the electromagnetic wave and we have set h equal to unity for 
notational convenience. Here 

and 

j ( t )  = eiH'j(o)e-'''' 

is the current operator in the Heisenberg representation and the average of an operator is 
defined by 

where H is the total Hamiltonian of the system and Q is the free energy defined through 
following relation: 

In the above equations, fif  and N I  are the chemical potential and number operator of layer 
I (1 or 2), and is the inverse temperature in energy units. Equation (7) can be rewritten 
as 

oPV,rr,(o) = qO(o)6,,6w + uLu,fp(o) (9) 

where 

The calculation of the current-current correlations and the conductivity in the bulk 
case LIZ] 2D systems [13, 141 and superlattice structures [I51 are all well documented and 
we shall not present here detailed derivations. Our basic treatments are that electron- 
electron interactions are treated in the self-consistent field approximation and electron- 
phonon collisions in the Bom approximation. Under these approximations, we need only to 
consider the class of diagrams of figure 1. Our expression includes the full dynamical 
screening of the electron-phonon systems. The wavy line in figure 1 is the effective 
interaction of an electron with another electron on the same or different layers; this consists 
of both the direct Coulomb interaction as well as the interaction through phonon exchange. 
Analytically it can be written as the following integral equation: 

u u G 3 a m )  = VqVO + C ~ t ( n , q , ) ~ , : ( q , ~ , ) ~ ~ ( ~ r m )  + v, ( l l " )nr" (q ,~m)ut?, (q ,~m)  
43 r" 

+ xct(qv %)c;,(ns qr)DQ(Q")nI"(9, @ m ) v f " f , ( q ,  am) (12) 
qr.r" 
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( a )  b)  (C) 

Figure 1. (uWe) A class of diag" 
that conhibutes lo the high-Frequency 
wnduclivily. The full curve rep 
resents the electron propagator and 
the wavy curve represents the effeo 
tive interaction. (f) The diagram- 
matic representation of the effective 
interaction where the bmken line is 
for bare e l e c m n 4 e c m o  interaction 
and the dotted line is for unscreened 
elecmn-phonon coupling. 

where 

am = 2irmi/p m =any integer. 

In (1 I), n(q, w )  is the electronic polarizability and Dq is the free phonon propagator, given 
as 

By making a suitable choice of the electronic wavefunction in the z direction, the summation 
over qr can be performed in (13). In the present approximation electrons are purely two- 
dimensional, and we obtain 

Since there are only two layers in our system, all components of urp can be obtained 
analytically; for example 

V2I + $21 

[ I  - w I  +w-m - ~ v l z + r l l z ~ ~ v 2 1  +l~l~)rm U21 (q, w )  = 

(15) 
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where we have suppressed the explicit q dependence of V and the q,  o-dependence of + 
and IT. In the above equation, VI, = 2ne2/q, VZI = V~e-q'. 

The frequency-dependent interlayer interaction u n  can be separated into two terms 

where e(q ,  m) is the dynamical dielectric function of the electrons, given by 

E ( ~ , o )  = ( I  - ~ ~ ~ n ~ ) ( i  - vzzn2) - ~ ~ ~ ~ ~ ~ n ~ n ~  (17) 

and the renormalized electron-phonon coupling 4 is given as 

(18) 

The function P ( q ,  0) is the correction to the dielectric function due to electron-phonon 
coupling: 

p ( q , o )  = n 2 ( ~ - v l l n l ) + 2 z + n l ( ~  - ~ ~ n ~ ~ ~ ~ ~ + n ~ n ~ ~ + ~ ~ + ~  t $12$zl + ~ v ~ ~ ~ ~ ~ I .  
(19) 

The meaning of the separation in (16) is that the first term is the screened Coulomb 
potential due to the collective motion of the electrons and the second term represents the 
renormalized phonon interaction at a vertex with the electron through a screened electron- 
phonon interaction. 

The renormalized electron-phonon coupling 4,  given by (18) and (19). looks rather 
complicated, especially when separation of the real part and imaginary part is required. 
However, the physical meaning of this renormalization can be visualized in the case of 
weak electron-electron coupling (or small plasma parameter r, = me2/ii2kF). In this case. 
terms in higher order of r, can be neglected (e.g. the nl n2 term) and we obtain 

where 6 is the halfwidth of the free phonon and 

is the relative shift of phonon frequency, and 

is the correction to the phonon width due to electron-electron interaction. 
In this paper, our main concem is the interlayer momentum or current relaxation due 

to both the electron-electron and electron-phonon interaction. Therefore we shall study the 
off-diagonal matrix element of the conductivity in detail: 

1 
(23) U#".21(4  = --y+ io pv.21 ( 0) 
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. where for any function f (2) in the complex z plane, we denote 

The function Y+ is the analytical continuation of M ( n ) .  which is given by 

and 

M,,,,zi(u) = ( ~ ~ ~ , Z W ~ I ( O ) I )  - B < U < B .  (24) 

The interlayer matrix element MflV.21 can be obtained using the Green function technique 
to evaluate diagrams I(c) and l(d). We shall also assume that system is isotropic on the 
layer (M,,,, = MS,,, and we denote M,,,zI as simply M ~ L )  to obtain 

... 

x [nl(q+a,+~n) - n l ( q , a , ) ] [ n z ( 4 , a , + ~ . ) -  n 2 ( ~ . ~ d ]  (25) 

where e' has been factored out from u2i. In order to perform analytical continuation on the 
upper-half z plane, we first sum over m. After some algebra, we obtain 

x [uz1(q, u+)[n,(q,  U+ + W )  - nl(q, u+)i[n2(q, U+ + W )  - n 2 ( q ,  U+)] 
- u ~ ~ ( ~ . u - ) [ ~ ~ ( ~ , u + + w )  - n l ( q , ~ - ) i [ n z ( g . ~ + + ~ ) - n 2 ( ~ , ~ - ) ~ 6 )  

where U* = U ?C io. In the following. we are only interested in absorption properties due 
to interlayer interactions. The interlayer relaxation time rZ1 is given by the real part of the 
interlayer element of the conductivity tensor, r i '  ,., Re ( [U] - ' ) , , .  We obtain 

(27) 
where F = F I  + FZ + F3, and each can be written explicitly as 

= [ n b  + W )  + n:(u)i[n',(u t W )  t ~;(u)I[LJ:~(u + o)u,",(u) + u~, (u  +oJ)u:,(u)I 

F~ = -In:@ + W )  - n: (~) i [n ; (u  + W )  - ~: (u ) I [u ;~ (u  + w ) u ; ~ ( u )  - &(U + w)u:,(u)I 

- [n:(u + 0) + n : o i r n p ( u  + W )  - np(~)i 
x [Ul,(U + W)u;] (u ,  - UY2(U + w)u;,(u)l 

+ [ n h  + W )  - n:(u)l[np(u + 01 - n:(~)i 
x [&(U + @)4(U) + UPZ(U +O)u:,(u)l 

- [n% + 0) - ~ ~ ( u ) I u ; , ( u  + w)u:,(u)I 
F~ = 2 [ n , R ( ~  t U )  - ~ ; ( U ) H U : , ( U  + W)v:l(u)n:(u + W )  - u:,(u + W)$l(u)nfcu) 

where the superscripts R and I represent the real and imaginary parts of the relative 
quantities. This result is rather complicated, but in principle can be evaluated analytically 
or numerically for specific problems and is valid for any temperature. 
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3. Temperature dependence of r.’ in the DC limit 

If the temperature is higher compared to the photon energy, we may use the zero-frequency 
result of (26) to study the temperature dependence of the interlayer relaxation process. First 
we notice that Fz. F3 and the second term of FI all approach zero when w -+ 0, and we 
obtain 

Here (27) is only a special limiting case of a general frequency-dependent relaxation. By 
making use of (16). the interlayer coupling strength I U I Z ( U ) I ~  can be rewritten as 

We shall discuss the contribution to t;l(T) due to each term in (27) below. 
When the electron-phonon coupling is neglected, only the first term in (29) contributes. 

Furthermore, if we assume energy transfer during the collision is smaller compared to the 
temperature, static screening is applicable. By making use of the fact that, at low energy, 

can be written as F(q)u, we immediately obtain 

Here Fi(q )  = m:e(kii - ( q / 2 ) 2 ) / q , / k i i  - (9/2)2,  where B(x)  is a Heaviside unit step 
function. It should be pointed out that the low-frequency Coulomb collision is always 
proportional to T 2  for virtually all systems [13, 161; it is essentially due to the phase space 
allowed during the collision. Two-layer systems simply provide an excellent sample which 
demonstrates such T 2  behaviour. We also notice that Fi(q) goes to zero as ni goes to zero, 
therefore the interlayer collision frequency vanishes as the electron density on either layer 
approaches zero. 

The contribution due to electron-phonon coupling is determined by both the second 
and third term in (29). Such effects were recentIy studied by Tso and co-workers [ 111. In 
their WO& they assumed that the contribution due to the third term (termed as real phonon 
exchange) is negligible. Therefore they only consider the term proportional to 4 (called the 
virtual phonon process). However, their result that the interlayer relaxation due to virtual 
phonon exchange is almost independent of layer separation a seems in contradiction with 
the second term in (29). It is clear that to leading order (under the assumption 9,a >> 1, 
where qs is the screening length), the contribution due to this term should have the same U 
dependence as that due to the first term. Our result of interlayer relaxation due to virtual 
phonon exchange can be written as 

The numerical results of for two different layer separations are presented in figure 2 
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4. Frequency dependence of r;2' at T = 0 

We now consider the frequency dependence of r;'(w). If the temperature is low compared 
to the photon energy, we can perfonn our calculation by using the zero-temperature 
approximation, and obtain 

Zhang C and Y Takahashi 



Figure 2. Plots of interlayer momenlum relaxation rate 
R = ?;I due lo elecuon-phonon coupling as a function 
of lemperalure in the Dc limit Here r, = 1.0 for 
both layers and the free-phonon linewidth is chmen as 
O.OMIIEF. The full cune  is for kFa = 1.0 and the 
dotted curve is for kFa = 2.0; lhe ratio us jw (where us 
is [he sound velocily) is chosen U, be 0.01. 

Figure 3. Plots of interlayer momenlum rehation rate 
R due IO electron-phonon coupling as a fnnction of 
normalized frequency, S2 = at m temperature. 
The fuU c w e  is for = 0 5  and the dolled curve 
is for b = 1.0; other parameters BR the same as in 
egure 2. 

5. Results and discussions 

In this work, our main concem is the dynamical conductivity of an electronic system 
consisting of two isolated parallel layers. We have calculated the offdiagonal component of 
the dynamical conductivity, which is directly related to the interlayer momentum relaxation 
rate. We obtain the rate R - rZ;' as a function of temperature and the frequency of 
photon field Such momentum relaxation is due to both the electron-elechon Coulomb 
interaction and the electron-phonon coupling. In the zero-frequency limit, the rate due 
to direct Coulomb interaction can be separated and the correction due to electron-phonon 
coupling is calculated explicitly. The temperature dependence of RIel-ph is similar to that 
obtained by the others. At low temperature, the rate goes to zero much faster than TZ due to 
the vanishing phonon population. At high T, the rate depends very weakly on T .  However, 
the rate depends on the layer separation very strongly, contrary to the findings of [ll]. 
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We have also studied the frequency dependence of R(w) at zero temperature due to total 
effective potential. At low frequencies, R(o) is again dominated by the direct Coulomb 
interaction and therefore exhibits a nearly w2 dependence. (It should be noted that an wz 
or T z  dependence is not limited to the present DQW structure, but is rather quite general, 
essentially because the density of states vanishes with w). The deviation from w2, which 
is quite noticeable, is believed to be the effect of phonons. The collective excitation of 
the coupled electron-phonon system contributes most at around and above EF. Here again, 
R(w) depends strongly on the layer separation; when the separation is reduced by half, the 
rate increases by an order of magnitude. 

We would like to point out that the previous conclusion [ I  I ]  that the interlayer electron 
momentum relaxation is nearly independent of the layer separation seems incorrect to us. 
The electron-phonon coupling parameter, @(q.  w )  (or IM(q,  w)lz in [ I  I]) is given by (5), 
(6) and (13). which is in general a strong separation dependent function. For 7.D or quasi- 
2 0  electron systems, the processes only involve those phonons with negligible wavevector 
in the z direction and the coupling parameter is given by (14). Even if one adopts the 
jellium model, as in [ I l l ,  a similar separation dependence should be obtained In [ I l l ,  
the assumption that IM(q,w)12 = 27re20A/q2 is a probably oversimplified model which 
leads to the final result being separation independent. Intuitively, the coupling between two 
electrons should vanish when they are far apart, whether it is a direct coupling or through 
some other exchange mechanism. 

In conclusion, the dynamical conductivity of a DQW in the U) limit has been investigated. 
We hope that the frequency dependence presented here can also be studied experimentally. 
This will certainly provide another avenue to check the role of phonons in the electron 
transport in DQW structures. 
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